DNA Based Therapies

Richard Irwin, Ph.D.

NTP Board of Scientific Counselors Meeting
November 20, 2008

FDA Nomination of DNA Based Therapies

- •Limited authority to require non-acute long term studies for biologicals
- •Majority of sponsors are small biotechnology companies or academic institutions that lack the resources to support extensive preclinical studies
- •Non dissemination of proprietary information making regulatory consensus difficult
- •DNA based therapies are the fastest growing segment of the product portfolio of the FDA Center for Biologic Evaluation and Research (CBER)

DNA Based Therapies

- Viral Vectors gene therapy
- Bacterial Plasmids plasmid based vaccines
- Non Coding RNA siRNA, ribozymes
- Synthetic Oligonucleotides immuno adjuvants

Current Activities

- Joint studies with FDA to examine insertional mutagenesis of retroviral and lentiviral vectors in hematopoietic stem cells
- Collaborative studies with NIDCR to evaluate the safety of using the protein secreting ability of salivary glands transduced with different vector-transgene combinations, to express and secrete transgene encoded therapeutic proteins into serum for treatment of single protein deficiency diseases

Insertional Mutagenesis Associated with Integration of Retroviral Vectors

- Integration occurs at random (?) genomic locations within transcriptionally active chromatin
- Portions of viral genome that remain in the vector (LTR) may contain promotor/enhancer sequences or other sequences that disrupt control of cellular genes
- Integration may disrupt the coding or control region of a gene
- The ectopic expression of the transgene <u>product</u> may alter or disrupt host cell signaling leading to activation of an oncogene or inactivation of a tumor supressor gene.

Ex-vivo Exposure with Retroviral Vectors

- Use vector to introduce (integrate into genome) therapeutic gene into population of stem cells: repopulating hematopoietic stem cells (HSC's)
- Serve as renewable source of cells expressing therapeutic gene product, providing permanent correction
 - bone marrow; enrich for HSC
 - ex-vivo exposure to vector
 - ex-vivo expansion
 - reinfusion

X-linked SCID

- SCID: severe-combined-immunodeficiency-syndrome
- Characterized by severe lymphopenia at birth; uniformly fatal within two years without intervention
- Associated with mutations in 9 genes that exhibit either
 x-linked recessive or autosomal recessive pattern of inheritance
- X-linked SCID is the most common form
- Caused by mutations in the gene encoding the common gamma chain (γ_c) a component of cell surface receptors for several interleukins (IL-2, IL-4, IL-7, IL-9, IL-15, IL-21)

First Successful Human Gene Therapy Trial

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Cavazzana-Calvo et al Science 288, 2000

Insertional Mutagenesis in a Human Clinical Trial Involving a Retroviral Vector

LMO2-Associated Clonal T Cell Proliferation in Two Patients after Gene Therapy for SCID-X1

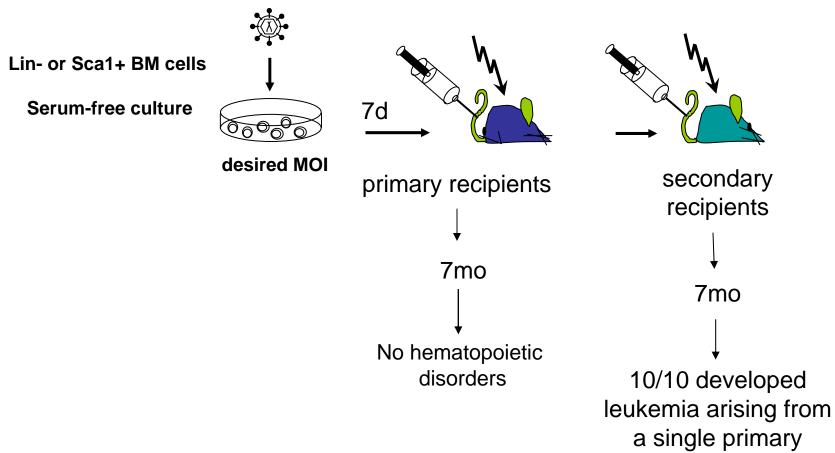
```
S. Hacein-Bey-Abina, 1,2* C. Von Kalle, 6,7,8 M. Schmidt, 6,7 M. P. McCormack, 9 N. Wulffraat, 10 P. Leboulch, 11 A. Lim, 12 C. S. Osborne, 13 R. Pawliuk, 11 E. Morillon, 2 R. Sorensen, 19 A. Forster, 9 P. Fraser, 13 J. I. Cohen, 15 G. de Saint Basile, 1 I. Alexander, 16 U. Wintergerst, 17 T. Frebourg, 18 A. Aurias, 19 D. Stoppa-Lyonnet, 20 S. Romana, 3 I. Radford-Weiss, 3 F. Gross, 2 F. Valensi, 4 E. Delabesse, 4 E. Macintyre, 4 F. Sigaux, 20 J. Soulier, 21 L. E. Leiva, 14 M. Wissler, 6,7 C. Prinz, 6,7 T. H. Rabbitts, 9 F. Le Deist, 1 A. Fischer, 1,5 † M. Cavazzana-Calvo 1,2 †
```

We have previously shown correction of X-linked severe combined immunodeficiency [SCID-X1, also known as γ chain (γ c) deficiency] in 9 out of 10 patients by retrovirus-mediated γ c gene transfer into autologous CD34 bone marrow cells. However, almost 3 years after gene therapy, uncontrolled exponential clonal proliferation of mature T cells (with $\gamma\delta$ + or $\alpha\beta$ + T cell receptors) has occurred in the two youngest patients. Both patients' clones showed retrovirus vector integration in proximity to the *LMO2* proto-oncogene promoter, leading to aberrant transcription and expression of *LMO2*. Thus, retrovirus vector insertion can trigger deregulated premalignant cell proliferation with unexpected frequency, most likely driven by retrovirus enhancer activity on the *LMO2* gene promoter.

Hacein-Bay Abina et al, Science 302, 2003

Insertional Mutagenesis in Mouse Gene Marking Study

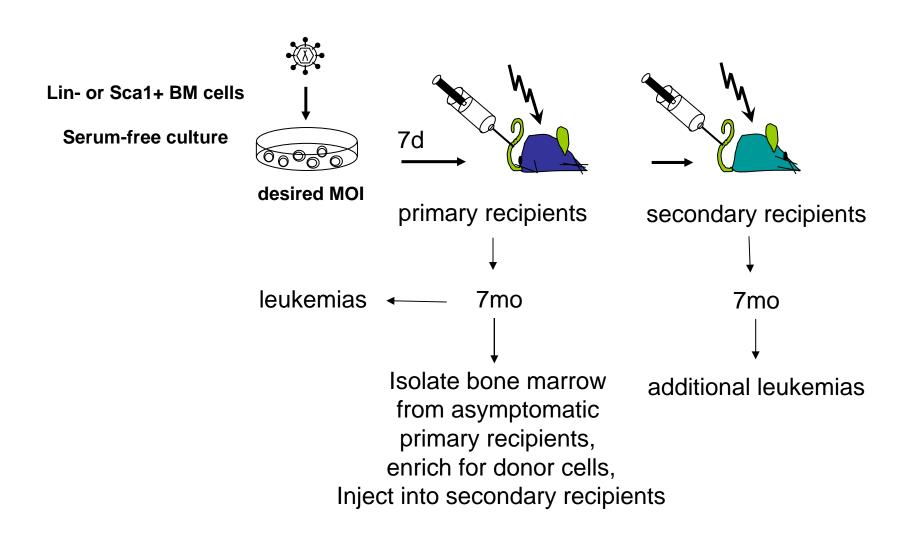
MEDICINE


Murine Leukemia Induced by Retroviral Gene Marking

Zhixiong Li,^{1,2} Jochen Düllmann,³ Bernd Schiedlmeier,¹
Manfred Schmidt,⁴ Christof von Kalle,⁴ Johann Meyer,²
Martin Forster,¹ Carol Stocking,¹ Anke Wahlers,¹ Oliver Frank,¹
Wolfram Ostertag,¹ Klaus Kühlcke,⁵ Hans-Georg Eckert,⁵
Boris Fehse,³ Christopher Baum^{1,2}*

Li et al, Science 296, 2002

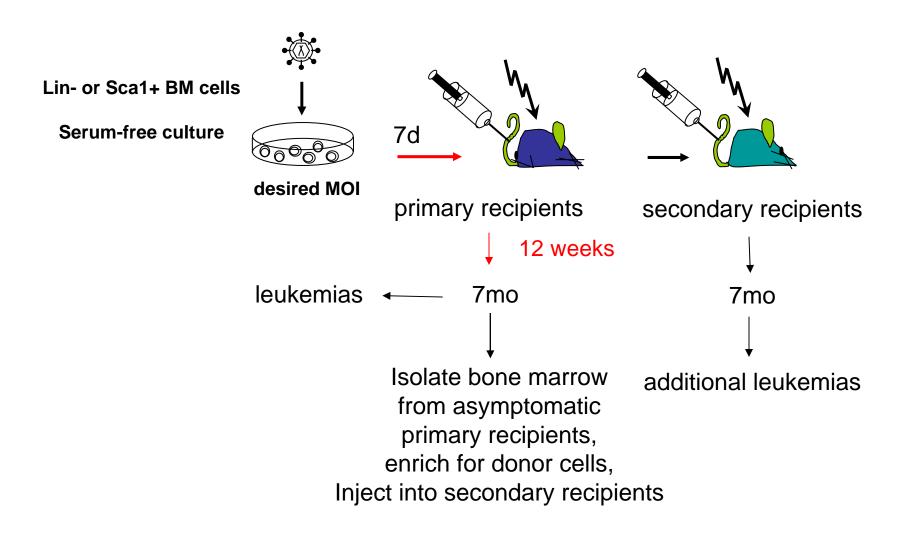
Serial Bone Marrow Transplantation Model

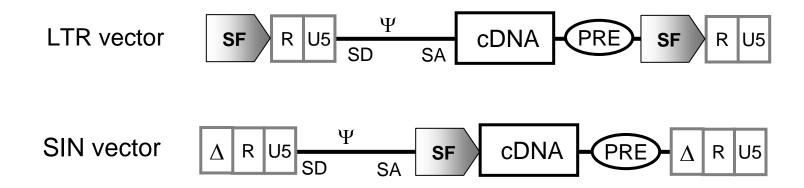

recipient

Li et al, Science 296, 2002

Factors Influencing Retroviral Vector Mediated Insertional Mutagenesis leading to Tumor Development

- Vector Architecture
 - backbone elements
 - transgene
 - presence or absence of certain promotor- enhancer elements
- Dose multiplicity of insertions
- Insertion sites


Assay for Insertional Mutagenesis


Animal Models

- Donors: female C57BL/6
 - Carry the normal Ptprcb allele
- Acceptors: female B6.SJL Ptprca Pepcb /BoyJ
 - Ptprca and Pepcb are closely linked alleles serially backcrossed from SJL/J onto C57BL/6
- Ptpr = protein tyrosine phosphatase receptor; cell surface protein aka
 CD45 allows separation of donor (b allele) and acceptor (a allele)
 bone marrow cells

Pilot Study

Vector Design for Initial FDA Study

Transgene: enhanced green fluorescent protein EGFP

Flow cytometry results for bone marrow

- Robust (>50 %) donor engraftment observed in:
 - 10/15 NTPMOCK
 - 15/15 NTPLTR
 - 8/9 NTPSIN
- NTPLTR mice had greater donor cell engraftment and higher total % EGFP+ cells relative to NTPSIN

Definitive Studies

- 50 animals per group; 2 multiplicities of infection (MOI), low and high;
- After 7 months bone marrow from each vector exposed asymptomatic primary recipient will be transplanted into 2 irradiated secondary recipients and maintained for another 7 months;
- Monthly transgene analysis and leukemia monitoring in peripheral blood;
- collection of tissues for DNA extraction and insertion site mapping

Gene Transfer to Rat and Mouse Salivary Glands: Dr. Bruce Baum, NIDCR

- Investigate the feasibility and safety of using the protein secreting ability of salivary glands transduced with different vector-transgene combinations, to express and secrete transgene encoded therapeutic proteins;
- Salivary glands are capable of endocrine secretion of proteins directly into serum;
- Treatment of single protein deficiency diseases:
 - Growth hormone
 - Clotting factors
- Treatment of salivary gland disorders: loss of saliva secretion associated with radiation treatment of head and neck cancers

Advantages of Salivary Gland Transduction

- In vivo transduction direct access to salivary glands through cannulation of excretory ducts; no surgery required
- In humans, cannulation is a routine clinical procedure performed without anesthesia
- Human salivary glands are encapsulated, potentially limiting the systemic dissemination of gene transfer vectors
- Salivary glands can be surgically removed in case of complications

Major Objectives

- Evaluate toxicity associated with salivary gland transduction
- Persistence and duration of transgene expression
- Distribution of therapeutic protein between serum and saliva
- Biological response to transgene encoded protein
- Systemic distribution of vector
- Effect of vector dose on transduction efficiency

Typical Study Protocol

- Day 1: animals (males and females, 5-10/group) cannulated in right submandubular gland duct (under anesthesia) and solution of vector in saline injected via syringe connected to cannula
- Typically 4-5 dose groups (vector particles/unit volume)
- Standard in life monitoring
- Days 3, 29, 57, 92 collect blood and saliva, necropsy animals and collect tissues
- Hematology, clinical chemistry, histopathology
- QPRC on testis/ovary, spleen, liver, lungs, heart, right kidney, intestine, brain, tongue, peripheral blood, saliva, draining lymph node, right and left submandibular gland

Vector Transgene Combinations

- AdCMVhGH: adenoviral vector with human growth hormone gene driven from a CMV promotor
- No effect on food or water consumption
- Dose related levels of hGH in serum.
- Vector present primarily in submandibular glands

Vector Transgene Combinations

- AdhAQP1 adenoviral vector with human aquaporin-1 transgene
- No adverse effects; vector localized to salivary glands
- Previous studies in minipigs and rats demonstrated that transduction of salivary glands in animals that were irradiated in the head/neck region restored lost salivary gland function
- Currently this vector is being used in a human clinical trial to determine
 if this treatment may be used in humans that have lost salivary gland
 function as a result of irradiation for head and neck cancers

Vector Transgene Combinations

- AAVhEPO: vector based on <u>a</u>deno <u>a</u>ssociated <u>v</u>irus carrying human erythropoietin transgene hEPO
- No adverse toxic effects
- Dose related increase in erythropoiesis
- Biodistribution revealed significant differences between males and females

Studies Completed

- Voutetakis A, Zheng C, Wang J, Goldsmith CM, Afione S, Chiorini JA, Wenk ML, Vallant M, Irwin RD, Baum BJ. Gender differences in serotype 2 adenoassociated virus biodistribution after administration to rodent salivary glands. Hum Gene Ther. 2007 Nov;18(11):1109-18.
- Zheng C, Goldsmith CM, Mineshiba F, Chiorini JA, Kerr A, Wenk ML, Vallant M, Irwin RD, Baum BJ. Toxicity and biodistribution of a first-generation recombinant adenoviral vector, encoding aquaporin-1, after retroductal delivery to a single rat submandibular gland.
 Hum Gene Ther. 2006 Nov;17(11):1122-33.
- Zheng C, Voutetakis A, Kok MR, Goldsmith CM, Smith GB, Elmore S, Nyska A, Vallant M, Irwin RD, Baum BJ. Toxicity and biodistribution of a first-generation recombinant adenoviral vector, in the presence of hydroxychloroquine, following retroductal delivery to a single rat submandibular gland.
 Oral Dis. 2006 Mar;12(2):137-44.

Summary

- Development and validation of models for preclinical evaluation of viral vectors and other DNA containing therapies
- Data from studies conducted by the NTP is readily available in the public domain and will serve as a resource for regulators and researchers

Collaborators

FDA Division of Cellular and Gene Therapy

- Carolyn Wilson
- Mercedes Serabian

Cincinnati Childrens Medical Center

- Lilith Reeves
- Chris Baum

Battelle Laboratories

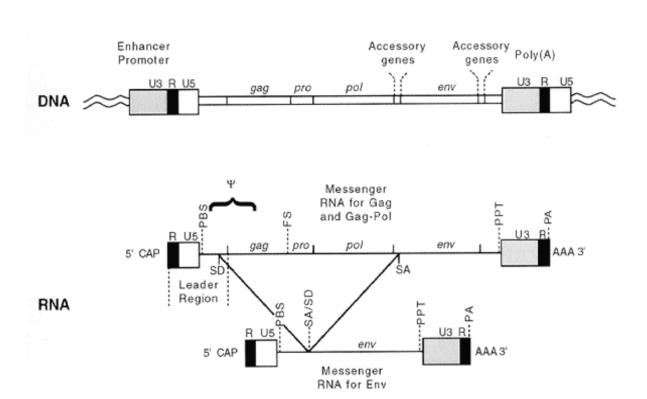
- Milton Hejtmancik
- Laurie Fomby

NIDCR

- Bruce Baum
- Changyu Zheng

Bioreliance

Marty Wenk


NTP

Molly Vallant

PCR

- qPRC
 - Marking primarily present in the bone marrow and spleen of NTP-LTR and NTP-SIN
 - Vector was only detected in peripheral blood of 5 animals
- ecoRCR
 - No amplification for viral ecotropic envelope sequences
- LM-PCR
 - No monoclonal dominance noted
 - All NTPLTR and NTPSIN animals demonstrated vector insertions

Genetic Organization of Simple Retrovirus

Construction of a Retroviral Vector

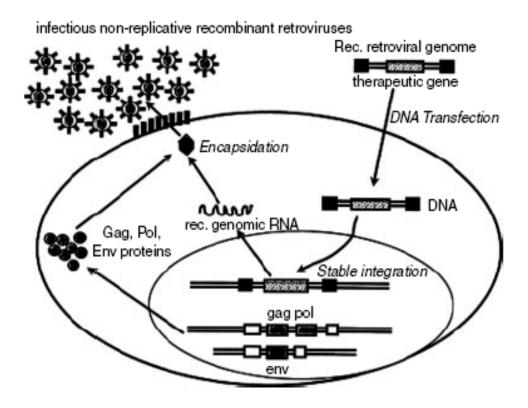


Figure 1. Functioning of a third-generation MLV-packaging cell line (from [14])